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Abstract
The quantum axial next-to-nearest neighbour Ising (ANNNI) chain in a
transverse field is investigated by means of the bosonization approach in the
limit of the large next-to-nearest neighbour interaction. In this regime, this
model can be viewed as a weakly coupled two-leg zigzag ladder which enables
us to derive its low-energy effective field theory. In particular, it is shown
that the effect of frustration in the system is captured by the presence of a
non-zero conformal spin perturbation that accounts for the existence of all the
incommensurate phases of the model.

PACS numbers: 0550, 7510J, 6470R

One of the most striking effect of frustration in magnetic systems is that it can lead to a
huge number of degenerate ground states. As a result, the nature of finite temperature phases
may not, in contrast with ferromagnetic systems, be linked only to the sole nature of the
microscopic degrees of freedom and the dimension of space-time. Since frustration induces
strong fluctuations that involve a large number of spins, the low-energy physics is determined
by interferences between very different regions of phase space. With this picture in mind one
may not expect the field theoretical description of the frustration to be an easy task. Of course
there have been several attempts to describe frustrated magnets by field theories. But, to our
knowledge they were mostly restricted to models that displayed well defined ground states,
such as helical ordering, and the main effect of frustration was captured by an enlargement of
the dimension of the order parameter space [1]. Here our aim is to single out an operator, in
the renormalization group (RG) sense, that captures the effect of frustration. In this respect,
we shall consider the most studied frustrated system, i.e. the two-dimensional axial next-to-
nearest neighbour Ising (ANNNI) model (see [2–4] for a review). This model is characterized
by a nearest-neighbour ferromagnetic interaction (−J1 < 0) and a competing next-to-nearest
neighbour antiferromagnetic interaction (J2 > 0):

H = −J1

∑
(i,j)

σiσj + J2

∑
[k,l]

σkσl (1)
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Figure 1. Phase diagram of the classical two-dimensional ANNNI model.

where (i, j) denotes the nearest-neighbour pairs and [k, l] the next-to-nearest ones along a
single space direction. The phase diagram of the model (1) is very rich and well known and can
be summarized as follows. At zero temperature, the ground state is ferromagnetic forJ2 < J1/2
and antiferromagnetic (actually an antiphase ↑↑↓↓) for J2 > J1/2. At the special point
J2 = J1/2, the ground state is infinitely degenerate and correlation functions are short ranged.
At finite temperatures (T �= 0), one observes the following five different phases depending
on the parameters (see figure 1): ferromagnetic (F), paramagnetic commensurate (PC),
paramagnetic incommensurate (PI), incommensurate critical phase (IC, also often called the
‘floating phase’) and antiphase (A). Three different kind of phase transitions are present in this
diagram: an Ising transition between the F and PC phases, a commensurate–incommensurate
transition [5] between the A and IC phases, and a Berezinski–Kosterlitz–Thouless (BKT)
transition separates the IC and PI phases. There is also a disorder line that extends down to
zero temperature which divides the PC and PI phases [6]. A highly notable feature of this
phase diagram is the existence of an incommensurate critical phase in a finite region of the
parameter space. In a seminal work, Villain and Bak [7] proposed an approximate effective
theory in terms of fermions valid in the vicinity of the degenerate point J2 = J1/2. All their
predictions have been further confirmed by numerical investigations and series expansions. It
is the purpose of this letter to propose a complementary and alternative low-energy description
of the ANNNI model valid in the large-J2 limit. Furthermore, within our approach, we exhibit
a particular operator that is at the origin of the incommensurate phases found in the phase
diagram (figure 1).

Our starting point is to map (1) into a quantum Ising model in a transverse magnetic field.
This is done by introducing an anisotropy between the nearest-neighbour interaction in the
x-direction (J1) and in the y-direction (Jτ ). As it is well known (see [4] for a review), the
physics of the classical model (1) should be equivalent to the one described by the following
quantum Hamiltonian:

H =
∑
n

[−βJ ∗
τ σ

z
n + βJ2 σ

x
n σ

x
n+2 − βJ1 σ

x
n σ

x
n+1

]
(2)

where σx
n , σ z

n are Pauli matrices and 2βJ ∗
τ = ln coth(βJτ ). The model (2) is nothing but the

one-dimensional ANNNI model in a transverse field. As seen in figure 2, it can also be viewed
as two quantum Ising chains labelled (1) and (2) coupled by a ‘zigzag’ interaction with strength
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Figure 2. In the large-J2 limit, the ANNNI model is better
viewed as two weakly coupled quantum Ising chains.

J1 and thus identifies with a two-leg quantum Ising ladder with Hamiltonian

H =
∑

n,a=1,2

[
−βJ ∗

τ σ
z
a

(
n +

a

2

)
− βJ2σ

x
a

(
n +

a

2

)
σx
a

(
n + 1 +

a

2

)]

−βJ1

2

∑
n

σ x
1

(
n +

1

2

) [
σx

2 (n)− σx
2 (n + 1)

]
+ (1 → 2). (3)

Notice that in order to obtain (3) we have performed an (unphysical) gauge transformation on
the ath chain (a = 1, 2): σx

a (n + a/2) → (−1)n+aσ x
a (n + a/2). As we shall now see, the

model (3) can be consistently described by a continuous field theory in the limit J1 � J2 and
J2 ∼ J ∗

τ .

Continuum limit. We shall study the model in the vicinity of the antiferromagnetic phase
where J1 � J2. One can take advantage of the fact that in the limit J1 = 0 the model is
equivalent to two decoupled Ising models which are critical when J2 = J ∗

τ . One can therefore
expand the theory around the conformal invariant fixed point with symmetry Z2 ⊗ Z2. In the
critical regime the two Ising chains are described by two pairs of right- and left-Majorana (real)
fermions ψa(R,L), a = 1, 2:

H0 = −i
v

2

∑
a=1,2

(ψaR∂xψaR − ψaL∂xψaL)−m (ε1 + ε2) (4)

εa = iψaRψaL being the energy operator of the ath Ising model whereas the mass gap and the
velocity are given by m = 2(J ∗

τ − J2)/T � 1, v = a0J
∗
τ /T (a0 being the lattice spacing).

In the absence of interchain interaction, the system is disordered (respectively ordered) when
m > 0 (respectively m < 0) and one has 〈σa〉 = 0 (respectively 〈σa〉 �= 0) where σa are the
order operators associated with the two Ising models. We now consider the interacting case
and take the continuum limit of the second term in equation (3) in the regime J1 � J2 to obtain

H  H0 + g V V = a
1/4
0 (σ1∂xσ2 − σ2∂xσ1) . (5)

When m = 0 and g = J1/2T = 0, the model is conformally invariant with central charge
c = 1

2 + 1
2 = 1. In the generic case, this fixed point is perturbed by the thermal operators

ε1(2) which have scaling dimension � = 1 and the operator V which has scaling dimension
� = 5/4. It is important to stress that both operators reflect very different physical behaviours.
While the former is the standard operator measuring deviation from criticality in non-frustrated
Ising magnets, the latter encodes the whole effect of frustration and is responsible, as we shall
see, for the non-trivial phases of the ANNNI model. The operator V manifests itself by the fact
that it is a parity symmetry breaking perturbation with a conformal spin equals to 1. The effect
of such a non-zero conformal spin term is non-trivial since the usual irrelevant versus relevant
criterion does not hold for such a non-scalar contribution (see, for instance, the discussion
in [8]). In fact, a similar operator also appears in the study of the S = 1/2 Heisenberg
zigzag ladder [9] and has been called a ‘twist term’. Such a contribution is difficult to handle
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non-perturbatively but it has been stressed that this term may represent a new mechanism for
incommensuration in one-dimensional systems [9, 10]. As we shall see, in the particular case
of the ANNNI model, the effect of this operator can be elucidated by means of the bosonization
approach and accounts for the formation of the non-trivial incommensurate phases depicted in
figure 1.

Bosonization and effective theory. We shall use the well known equivalence between two
critical Ising models, characterized by four chiral real fermions ψ1R(L) and ψ2R(L), and a free-
boson theory described by the chiral fields φR(L). The bosonization rules are (see [8] for a
review):

(ψ1 + iψ2)R(L) = 1√
πa0

exp
(
±i

√
4πφR(L)

)
(6)

from which it follows that H0 is equivalent to a sine-Gordon model at β2 = 4π (free-fermion
point). The bosonization of the twist term (5) requires more work. A suitable bosonic
expression is obtained by considering the following operator product expansion (OPE) that
stems from the fact that the order operator σa is a primary field:

(T1 − T2) (z)σ1σ2(w, w̄) ∼ 1

z − w
[σ2∂σ1 − σ1∂σ2] (w, w̄) (7)

where Ta (a = 1, 2) are the energy–momentum tensors in the holomorphic sector (z = vτ +ix)
associated with the Ising models. The fields in the left-hand side of equation (7) can be
expressed in terms of the bosonic fields: T1 − T2 = cos(

√
16πφL) and σ1σ2 = √

2 sin(
√
π#)

(# = φL + φR). We thus deduce by performing the OPE in the bosonic theory the following
representation of the twist term:

H = v

2

((
∂x#

)2
+

(
∂x$

)2) − m

πa0
cos

(√
4π#

) − i
g
√

2

a0
cos

(√
π#

)
sin

(√
4π$

)
(8)

$ = φL − φR being the dual field. The next step of our approach is to map (8) onto the XXZ
Heisenberg model in a magnetic field:

H = 2πu

3

(
J2

R + J2
L

)
+ 4πma0

(
J x

RJ
x
L + J

y

RJ
y

L

)
+ πg

√
2
(
J
y

R − J
y

L

)
+ 2πλ0J

z
RJ

z
L (9)

where u = 5v/4, λ0 = 3v/2 and the SU(2)1 Kac–Moody currents are given by J z
L,R =

∂xφL,R/
√

2π and J +
L,R = exp (±i

√
8πφL,R)/(2πa0). The two expressions (8) and (9) can be

shown to be equivalent by a canonical transformation at the special value λ0 = 3v/2. As a
result, in an appropriate basis, the twist operator acts as a magnetic field. The model (9) is
more conveniently analysed in a basis where the magnetic field lies along the z-axis. To do
so, we perform a π/2 rotation around the x-axis in the spin space so that one finally obtains,
after rebosonizing once again, the currents

H = u∗

2

((
∂x#

)2
+

(
∂x$

)2) − g1 cos
(√

8πQ#
)

− g2 cos
(√

8π/Q$
)

− h ∂x$ (10)

where

Q =
√

1 −ma0/u

1 + ma0/u
u∗ = u

√
(1 + ma0/u)(1 −ma0/u) (11)

g1(2) = (2m ± λ0/a0)/(4πa0), and h = g
√
π/Q. The effective field theory (10) is the main

result of this letter and all the different phases (apart from the F and PC phases) observed in
the ANNNI model can be deduced from a simple analysis of it.
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Phase diagram. Consider first the high-temperature phase, i.e. when m > 0. Since Q < 1,
for sufficiently large m, the term cos(

√
8π/Q$) is strongly irrelevant and can be dropped.

The remaining theory is then easy to analyse and a mass gap to all excitations is generated
due to the presence of the relevant cos(

√
8πQ#) term. On the other hand the operator ∂x$

leads to incommensurate fluctuations of the $-dependent correlation functions. This phase
corresponds to the incommensurate paramagnetic phase PI. This picture is confirmed by an
exact solution at the special valueQ = 1/2 where the model becomes equivalent to that of free
fermions with dispersion ε2

±(k) = v2(k ± g
√

2π/v)2 + 9v2/16a2
0 . As readily seen, there is a

spectral gap and incommensuration develops as soon as g �= 0 with wavevector k∗ = √
2πg/v.

Similarly one can study the low-temperature regime, i.e. m < 0 and Q > 1. For
sufficiently large m, it is now the cos(

√
8πQ#) term that is irrelevant and can be dropped.

After a duality transformation, the resulting Hamiltonian is equivalent to the XXZ chain in a
magnetic field along the z-axis which is equivalent to the bosonized version of the Villain–
Bak theory [11] derived in the vicinity of the degenerate point J2/J1 = 1/2, T = 0. At
small g, there is a gap to all excitations with no incommensuration: it corresponds to the A
phase. As g grows, the magnetic field increases until it reaches the gap at some critical value
(gc1) above which the excitations become massless. For g > gc1, the system also displays an

incommensurate behaviour with wavevector k∗ ∼
√
g2 − g2

c1 and one enters the floating phase
IC. The nature of the transition at g = gc1 is of a commensurate–incommensurate type [5].
Finally, as g further increases, the cos(

√
8πQ#) term eventually becomes relevant and opens

a gap at a critical value gc2, where a BKT transition to the PI phase takes place. This picture
is, as above, confirmed by an exact solution at the point Q = 2 where the model (10) becomes
equivalent to massive free fermions.

As seen, the previous analysis correctly reproduces the phase diagram of the ANNNI
model in the vicinity of the A phase where frustration plays its tricks. To do so, we have
assumed that |m| was sufficiently large to be able to neglect one of the cosine terms in
equation (10). One can question the validity of this scheme when m ∼ 0 where both
cos(

√
8πQ#) and cos(

√
8π/Q$) operators, being almost marginal, compete. A detailed

analysis of the RG equations associated with (10) is therefore required, but one is faced with
the difficulty that the coupling constants are not small since λ0 is of order one. One has
therefore to make the hypothesis that the qualitative feature of the RG approach does not
depend on the strength of g1 and g2 and treat them as small couplings. The RG equations
have already been obtained in a different context by Giamarchi and Schulz [12]. It follows
from [12] that the results we have obtained for large |m| remain valid for small m confirming
our hypothesis. However, there is room for a spin-flop transition from the A phase directly
to the PI phase if the cos(

√
8πQ#) perturbation blows up before the ∂x$ term closes the

gap. The occurrence of such a transition strongly depends on the microscopic couplings of
the bare Hamiltonian. The analysis of the RG equations for λ0 = 6u/5 reveals that a spin-flop
transition does not occur for the ANNNI model. However, care has to be applied since for
this value of λ0, perturbation theory does not strictly apply and this leaves open the question
of the existence of a Lifshitz point in the ANNNI model. Furthermore, note that the presence
of a Lifshitz point is a generic feature of (10). Therefore one may expect that other lattice
Hamiltonians displaying the same qualitative phase diagram as the ANNNI model will exhibit
such a point. In summary, we have derived a low-energy description of the ANNNI model
in the large-J2 limit where the system can be viewed as a weakly coupled two-leg zigzag
ladder. This enables us to start from a conformally invariant fixed point in the vicinity of
which the continuum limit is well defined and frustration manifests itself through the twist
operator. This approach accounts for all the incommensurate phases of the ANNNI model
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and in the low-temperature limit matches the Villain–Bak description near the degenerate
point.

D Allen is a CNRS post-doctoral fellow and thanks Université de Cergy-Pontoise for hospitality
while this work was initiated.
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